Future steps include the research team validating these AI findings and implementing them to enhance reliable data and reporting methods. (Representational image: Pixabay) 
MedBound Blog

Study: AI Could Transform How Hospitals Produce Quality Reports

New pilot study examines AI tools to streamline reporting processes in a hospital setting that could enhance health care delivery and improve access to quality data

Author : MBT Desk

A pilot study led by researchers at University of California San Diego School of Medicine found that advanced artificial intelligence (AI) could potentially lead to easier, faster and more efficient hospital quality reporting while retaining high accuracy, which could lead to enhanced health care delivery.

The study results, published in the October 21, 2024 online edition of the New England Journal of Medicine (NEJM) AI, found an AI system using large language models (LLMs) can accurately process hospital quality measures, achieving 90% agreement with manual reporting, which could lead to more efficient and reliable approaches to health care reporting.

Researchers of the study, in partnership with the Joan and Irwin Jacobs Center for Health Innovation at UC San Diego Health (JCHI), found that LLMs can perform accurate abstractions for complex quality measures, particularly in the challenging context of the Centers for Medicare & Medicaid Services (CMS) SEP-1 measure for severe sepsis and septic shock.

Traditionally, the abstraction process for SEP-1 involves a meticulous 63-step evaluation of extensive patient charts, requiring weeks of effort from multiple reviewers. This study found that LLMs can dramatically reduce the time and resources needed for this process by accurately scanning patient charts and generating crucial contextual insights in seconds.

By addressing the complex demands of quality measurement, the researchers believe the findings pave the way for a more efficient and responsive health care system.

Other key findings of the study found that LLMs can improve efficiency by correcting errors and speeding up processing time; lowering administrative costs by automating tasks; enabling near-real-time quality assessments; and are scalable across various health care settings.

Co-authors of this study include Shamim Nemati, Rishivardhan Krishnamoorthy, Kimberly Quintero, Shreyansh Joshi, Gabriel Wardi, Hayden Pour, Nicholas Hilbert, Atul Malhotra, Michael Hogarth, Amy Sitapati, Karandeep Singh, and Christopher Longhurst, all with UC San Diego.

This study was funded, in part, by the National Institute of Allergy and Infectious Diseases (1R42AI177108-1), the National Library of Medicine (2T15LM011271-11 and R01LM013998) and the National Institute of General Medical Sciences (R35GM143121 and K23GM146092) and JCHI.

Newswise/ SD

Dr. Darshan Parikh on Implant Success, Long-Term Oral Care, and What Patients Should Know (Part-5)

Planning a Hair Transplant in Tamil Nadu? TNMC Warns Only Registered Doctors Can Legally Perform the Procedure

India Launches 466 Day Care Cancer Centers to Expand District-Level Chemotherapy Access Nationwide

Tumbler Ridge Shootings Highlight the Need for Mental Health Support for Survivors and Their Community

From the Lab to the Living Room: Decoding Parkinson's Patients' Movements in the Real World